

U

Methodologies for efficient and reliable NPP polymer ageing management

TeaM Cables – Morgane BROUDIN (EDF R&D) El-Peacetolero – Mohamed BEN CHOUIKHA (Sorbonne Université Paris)

Why do we care about polymer ageing?

- Since 1960, the use of polymer materials has increased dramatically
 - From 10Mt to 359Mt in 2018, *i.e.* 3,600% growth in less than 60 years
- In the French nuclear sector, polymers occupy a share of 16% by mass compared to 6% 25 years ago
 - Polymer needs are real...

1500 km of cables per NPP including 50 km in reactor building

5 Tons of polymers in reactor building ~ football field

Polymer needs consist in providing...

• Key solutions

U

- Cheaper (faster) repair techniques with the same security level
- Specific materials (much more than ever): gamma stabilization, super hydrophobic
- Justifications "durability": obsolescence, duration life extension and set-up nondestructive exams
 - To schedule preventive and corrective maintenance operations

Reactor building dom repair Bruce Nuclear Generating Station (Ontario – Canada)

De

Cable jacket and insulation layer

HDPE Pipes EDF NPP SIZEWELL B, UK

How to schedule maintenance operations?

TeaM Cables in a nutshell

European tools and methodologies for an efficient ageing management of nuclear power plant cables

- H2020 Framework: "Continually improving safety and reliability of Generation II and III reactors"
 - 2017 2022
 - 5,5M€ including 4,2M€ financed by EU
 - 13 partners : from cable manufacturers to utilities through academic labs
 - Lead: EDF
 - XLPE insulations, NPP Cables
 - 3 PhD students (thesis presented) + 1 post-doc student
- A dedicated end-user's group
 - EDF, Tecnatom, Engie LaborElec, Airbus, Forsmark, Paks II, NEXANS
- Work plan combines
 - Experimental work packages to obtain data throughout accelerated ageing
 - Highly scientific work packages for the polymer ageing kinetics models

El-Peacetolero in a nutshell

Embedded Electronic solutions for Polymer Innovative Scanning Methods using Light Emitting devices for diagnostic Routines

- H2020 Framework: "Innovation for generation II and III reactors"
 - 2020 2023
 - 3,65M€ including 3M€ financed by EU
 - 9 Partners with a large spectrum of skills (materials, optoelectronic, artificial intelligence and robotics fields)
 - Lead: Sorbonne Université Paris
 - HDPE/Neoprene Pipes
 - 3 PhD students

U

- Work plan divided into two distinct large blocks of work:
 - Material's ageing and characterization, data generation, AI and algorithms
 - Device itself: LED set up, laser heads and the optoelectronics needed

IRSN

Nexans

framatome

Arts at Métiers

Fraunhofer

ARTTIC

eDF

Main scientific challenges?

Deeper understanding of operation-induced degradation mechanisms •

- A. Xu, et al., "Thermal ageing of a silane-crosslinked polyethylene stabilised with a thiodipropionate antioxidant", PDST, 2020. A. Xu, et al., "Physico-chemical analysis of a silane-grafted polyethylene stabilised with an excess of Irganox 1076®. Proposal of a microstructural model", PDST, 2021. A. Xu, et al., "Thermal ageing of a silane-crosslinked polyethylene stabilised with an excess of Irganox 1076®", PDST, 2021.

10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

- Deeper understanding of operation-induced degradation mechanisms
- Using multi-scale approach to predict reliable lifetime

Lessons learnt and follow-up issues

- · Accelerate YES but keep the representativeness of the degradation mechanisms observed in NPPs conditions
 - Setting up a dedicated accelerating aging loop within the framework of El-Peacetolero project considering numerous environmental factor (immersion in chlorinated and salted water in temperature)

Lessons learnt and follow-up issues

30 May - 3 June 2022 | Lvon, France

Capitalization!

- A novel "TeaM Cables tool" has been developed integrating the multiscale model and providing the residual lifetime of cables knowing material data and the exposure conditions (wiring network in the NPP)

Conclusions – to be continued...

- The combination of these 2 projects allows to provide non-destructive and predictive tools, that can help assessing the reliability and functionality of the polymer's-based components such as cables or pipes
- Predictive tool

U

- TeaM Cables highlights the importance of ageing models' choice (multi-scale approach vs. empirical approach), but also the need to crosscheck the results with data from in service inspections, which allows for predictive maintenance (as opposed to scheduled maintenance)
- NDTs
 - El-Peacetolero tool will be an innovative TRL7 product that will have demonstrated a real use in a safety critical industry
 - Within TeaM Cables EU H2020 project, dielectric spectroscopy already shown promising results to evaluate the degradation rate for portions of the cable

